8 research outputs found

    Increasing the robustness of autonomous systems to hardware degradation using machine learning

    Get PDF
    Autonomous systems perform predetermined tasks (missions) with minimum supervision. In most applications, the state of the world changes with time. Sensors are employed to measure part or whole of the world’s state. However, sensors often fail amidst operation; feeding as such decision-making with wrong information about the world. Moreover, hardware degradation may alter dynamic behaviour, and subsequently the capabilities, of an autonomous system; rendering the original mission infeasible. This thesis applies machine learning to yield powerful and robust tools that can facilitate autonomy in modern systems. Incremental kernel regression is used for dynamic modelling. Algorithms of this sort are easy to train and are highly adaptive. Adaptivity allows for model adjustments, whenever the environment of operation changes. Bayesian reasoning provides a rigorous framework for addressing uncertainty. Moreover, using Bayesian Networks, complex inference regarding hardware degradation can be answered. Specifically, adaptive modelling is combined with Bayesian reasoning to yield recursive estimation algorithms that are robust to sensor failures. Two solutions are presented by extending existing recursive estimation algorithms from the robotics literature. The algorithms are deployed on an underwater vehicle and the performance is assessed in real-world experiments. A comparison against standard filters is also provided. Next, the previous algorithms are extended to consider sensor and actuator failures jointly. An algorithm that can detect thruster failures in an Autonomous Underwater Vehicle has been developed. Moreover, the algorithm adapts the dynamic model online to compensate for the detected fault. The performance of this algorithm was also tested in a real-world application. One step further than hardware fault detection, prognostics predict how much longer can a particular hardware component operate normally. Ubiquitous sensors in modern systems render data-driven prognostics a viable solution. However, training is based on skewed datasets; datasets where the samples from the faulty region of operation are much fewer than the ones from the healthy region of operation. This thesis presents a prognostic algorithm that tackles the problem of imbalanced (skewed) datasets

    A Variational Bayes approach for reliable underwater navigation

    No full text

    Novel RUL prediction of assets based on the integration of auto-regressive models and an RUSBoost classifier

    No full text
    Abstract — This paper presents a novel, data-driven algorithm for the computation of the Remaining Useful Life (RUL) of an asset. The algorithm utilizes the asset’s state history to learn a prognostic model from data. The prognostic model comprises an ensemble of Auto-Regressive (AR) models, together with a state-of-the-art classifier. The AR part of the algorithm is used to predict the system’s state evolution. The classifier discriminates between healthy and faulty operation, given the asset’s current state. The predicted state, as computed by the AR model, is fed to the classifier. The first time when the predicted state is classified as faulty is returned as the RUL of the system. The resulting prognostic algorithm was tested on the CMAPSS dataset as provided from NASA Ames Research Center. Cases of unknown future input trajectory as well as cases with multiple faults have been investigated. I

    Modeling Tube Clearance and Bounding the Effect of Friction in Concentric Tube Robot Kinematics

    No full text
    corecore